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Abstract

An asymptotic study is presented for the effects of partial slip on
the linear stability of the flow due to a rotating disc to take into
account the effect of surface roughness. The basic steady flow
is obtained as an exact solution of the Navier-Stokes equations.
The linear stability of this flow for perturbations corresponding
to stationary crossflow vortices is considered for the inviscid
Type I instabilities by considering the appropriate asymptotic
regimes. Predictions for the neutral wavenumbers and orienta-
tions of the crossflow vortices are obtained.

Introduction

The asymptotic study of Hall [9] revealed the structure of insta-
bility modes in the flow due to a rotating disc. He considered
stationary disturbances, rotating with the disc, which take the
form of co-rotating vortices. He found that there are two neu-
trally stable modes; one governed by inviscid mechanisms and
the other by viscous mechanisms, corresponding, respectively,
to the upper and lower branches of the neutral stability curve.
These modes have subsequently been designated as Type I and
Type II modes.

Of interest are the stationary crossflow vortices which arise in
the transition process from a laminar to a turbulent flow. The
present study determines the important instability mechanisms
at large Reynolds numbers when the no-slip boundary condition
is replaced by a partial-slip condition.

Recent studies have investigated the stability of the flow over
a rough rotating disc, motivated by the potential for drag re-
duction. The numerical study of Cooper et al. [2] has shown
the effects of partial-slip boundary conditions on the Type I and
Type II instabilities for flow over a rotating disc. The partial-slip
condition approximates the no-slip boundary condition for the
case of small-scale roughness compared to the boundary-layer
thickness. It was found that the Type I instability was stabilised
for both anisotropic and isotropic roughness. The effect on the
Type II instabilities is of particular interest here as Cooper et
al. [2] show that it can be destabilising. An energy analysis
was also conducted to determine the dominant physical mecha-
nisms.

A subsequent study by Garrett et al. [5] investigated the effect
of an alternative formulation for the roughness for the linear
stability of flow due to a rotating disc with surface roughness.
Similar results were found compared to the case of partial-slip
considered by Cooper et al. [2] for the Type I modes, but dif-
ferences were obtained for the Type II modes.

The study of Cooper et al. [2] has been extended by Alveroglu
et al. [1] to consider the effect of surface roughness on the BEK
family of flows (Bodewadt and Ekman layer flows as well as
von Kármán flows).

The effects of partial slip on a non-Newtonian Reiner–Rivlin
fluid were considered by [11]. Non-Newtonian flows due to a
rotating disc have many industrial applications. Previous stud-
ies have determined the numerical solutions for various fluids

(see the review paper by [10] and the recent results of [3] for
a power-law fluid). The first linear stability analyses of such
flows has been given by [6, 7, 8].

This study is the first asymptotic investigation of the boundary-
layer flow over a slip surface. We consider the linear stability
of the inviscid (Type I) modes for flow due to a rough rotat-
ing disc. The solutions for the disturbed flow are determined
in the appropriate asymptotic regimes for large values of the
Reynolds number. These provide predictions for the wavenum-
ber and wave angle of the neutral disturbances. Solutions are
presented for a particular anisotropic roughness. Conclusions
are drawn as to the significance of the results in relation to drag
reduction. Finally, ongoing and future directions are discussed.

Formulation

We consider the effect of roughness on the stability of the flow
due to a rotating disc, following the approach of [2] and impos-
ing a partial-slip boundary condition at the wall. Anisotropic
and isotropic roughnesses are able to be modelled in this way.

The flow of an incompressible fluid of viscosity ν due to a ro-
tating disc is considered. If Ω is the angular rotation of the disc
and l is a typical length scale of the problem, we define the
Reynolds number Re = Ωl2/ν, which will be considered large
in the analysis to follow. We non-dimensionalise the govern-
ing equations with respect to l, with the velocity scale Ωl and
use (non-dimensional) cylindrical polar coordinates (r,θ,z), ro-
tating with the disc. The basic steady flow, obtained as an ex-
act solution of the continuity and Navier–Stokes equations, is
uB = [rū(ζ),rv̄(ζ),Re−1/2w̄(ζ)], where ζ = Re1/2z. The func-
tions ū, v̄ and w̄ satisfy the von Kármán equations with partial-
slip boundary conditions, namely

2ū+ w̄′ = 0, (1)

ū2− (v̄+1)2 + ū′w̄− ū′′ = 0, (2)
2ū(v̄+1)+ v̄′w̄− v̄′′ = 0, (3)

subject to

ū(0) = λū′(0), v̄(0) = ηv̄′(0) and w̄(0) = 0, (4)

ū→ 0, v̄→−1 as ζ→ ∞. (5)

Here a prime denotes differentiation with respect to ζ and the
coefficients λ and η give a measure of the roughness in the ra-
dial and azimuthal directions, respectively. We can consider
two types of anisotropic roughnesses on the rotating disc. If
λ= 0 and η> 0 this corresponds to concentric grooves. If λ> 0
and η = 0 this corresponds to radial grooves. We can consider
isotropic roughness for when λ = η > 0. An example of the ba-
sic flow solutions ū, v̄ and w̄ is shown in figure 1 for anisotropic
roughness with λ = 0.25 and η = 0.

We proceed to carry out a linear stability analysis for perturba-
tions corresponding to stationary crossflow vortices. The invis-
cid Type I instability is investigated by considering the appro-
priate asymptotic regimes. This is an extension of the study of
[9] to consider the effect of roughness.
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Figure 1: The basic flow solutions ū, v̄ and w̄ as functions of ζ

for λ = 0.25 and η = 0.
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Inviscid modes

The linear stability problem is considered, following the analy-
sis of [9]. We consider the perturbed flow u = uB+U. For large
Reynolds number the boundary-layer thickness is δ = Re−1/2.
We introduce the small parameter ε = Re−1/6 and consider dis-
turbances proportional to

E = exp
[

i
ε3

(∫ r
α(r,ε)dr+θβ(ε)

)]
.

The partial-slip boundary conditions lead to a different asymp-
totic structure compared to that detailed in [9] for the no-slip
case. The wavenumbers α and β expand as

α = α0 + ε
3/2

α1 + · · · , (6)

β = β0 + ε
3/2

β1 + · · · . (7)

The inviscid zone comprises the boundary layer so is of thick-
ness O(ε3). The velocity perturbations are given by U =

u(r,z)E where u = u0(ζ)+ ε3/2u1(ζ)+ · · · and similarly, for V ,
W and P.

Substituting the disturbed flow into the governing equations,
yields at leading order an equation for the leading-order normal
velocity perturbation, w0, namely

¯̄u
(

w′′0− γ
2
0w0

)
− ¯̄u′′w0 = 0, (8)

subject to

w0 = 0 at ζ = 0 and w0→ 0 as ζ→ ∞. (9)

Here ¯̄u = α0ūr + β0v̄ is the effective velocity and γ2
0 = α2

0 +

β2
0/r2. In the same way as for the no-slip case of [9] we find

that at a value of ζ = ζ̄ we have ¯̄u and ¯̄u′′ are both zero. Thus,
equation (8) does not have a singularity at ζ = ζ̄. This leads to
α0r/β0 =−v̄(ζ̄)/ū(ζ̄). Equation (8) can be solved numerically
(using finite differences) for the eigenvalue γ2

0 for particular val-
ues of the slip coefficients λ and η.

As an example, figure 2 shows the location of the critical value
ζ = ζ̄ ≈ 1.079 for λ = 0.25 and η = 0, which corresponds to
α0r/β0 ≈ 3.10. The corresponding solution for w0 is shown in
figure 3, where γ0 ≈ 0.647.

A wall layer of thickness O(ε9/2) is required to satisfy the
partial-slip wall boundary conditions. The analysis and solu-
tions in the wall layer differ from those in [9] so are given in
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Figure 2: Graphs of ¯̄u/β0 and ¯̄u′′/β0 as functions of ζ for λ =
0.25 and η = 0.
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Figure 3: The solution for w0(ζ) for λ = 0.25 and η = 0.
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detail. In particular, the pressure disturbance is larger. Defin-
ing ξ = ε−9/2z, then in the wall layer the velocity and pressure
perturbations expand as

u = U0(ξ)+ ε
3/2U1(ξ)+ · · · , (10)

v = V0(ξ)+ ε
3/2V1(ξ)+ · · · , (11)

w = ε
3/2W0(ξ)+ · · · , (12)

P = Pc(ξ)+ ε
3/2P0(ξ)+ · · · , (13)

while the basic flow quantities have the forms

ū = ūw + ε
3/2

ξū′(0)+ · · · ,
v̄ = v̄w + ε

3/2
ξv̄′(0)+ · · · ,

w̄ = ε
3/2

ξw̄′(0)+ · · · .

Here ūw = ū(0) and v̄w = v̄(0). Satisfying the linear disturbance
equations, the boundary conditions and matching with the invis-
cid solution yields the following solutions at leading order

U0 =
iα0w′0(0)

γ2
0

(
1− e−σξ

)
, (14)

V0 =
iβ0w′0(0)

rγ2
0

(
1− e−σξ

)
, (15)

W0 = w′0(0)ξ−
w′0(0)

σ

(
1− e−σξ

)
, (16)



and Pc = −i ¯̄uww′0(0)/γ2
0, where σ =

√
i ¯̄uw, taking the posi-

tive real part. Here ¯̄uw = rα0ūw + β0v̄w, and is positive for
anisotropic roughness with λ > 0 and η = 0.

The analysis in the inviscid zone must be continued to the next
order to find the first-order corrections to the wavenumbers. We
find w1 satisfies the same inhomogeneous equation as deter-
mined by Hall [9], namely

¯̄u
(

w′′1− γ
2
0w1

)
− ¯̄u′′w1 = 2¯̄u

(
α0α1 +

β0β1

r2

)
w0

+

(
α1−

β1α0

β0

)
r
(

ū′′−
¯̄u′′ū
¯̄u

)
w0. (17)

Solving this equation and matching with the solution in the wall
layer leads to the eigenrelation

2
(

α0α1 +
β0β1

r2

)
I1 +

(
α1

β0
− β1α0

β2
0

)
rI2 =−

(w′0(0))
2

σ
.

(18)
Here

I1 =
∫

∞

0
w2

0(t)dt, (19)

and

I2 = β0

∫
∞

0
w2

0

(
ū′′ ¯̄u− ¯̄u′′ū

¯̄u2

)
dt. (20)

Note that the integration for I2 must be deformed above (below)
the singularity at ζ = ζ̄ if ¯̄u′(ζ̄)< 0 (> 0).

Results

The eigenrelation (18) allows solutions for α0α1+β0β1/r2 and
α1/β0− β1α0/β2

0 to be obtained, which can be used to deter-
mine the first-order corrections to the effective wavenumber and
orientation of the vortices. We find that

α0α1 +
β0β1

r2 =
γc

r1/2

and
α1

β0
− β1α0

β2
0

=
φc

r1/2
,

where γc and φc are constants depending on the basic flow so-
lution and the leading order solution, for particular values of
slip coefficients λ and η. When ¯̄uw > 0, if we write ūc = ū(ζ̄),
v̄c = v̄(ζ̄), I2 = I2r + iI2i and σ =

√
i ¯̄uw = r1/2σc(1+ i), where

σc is a constant given by

σc =
γ

1/2
0√

2(1+ v̄2
c/ū2

c)
1/4

(
v̄w−

v̄cūw

ūc

)1/2
,

then we have

γc =−
(w′0(0))

2

4I1σc

(
1+

I2r

I2i

)
(21)

and

φc =
(w′0(0))

2

2σcI2i
. (22)

Define the Reynolds number based on the boundary-layer thick-
ness as Rδ so we have Rδ = Re1/2r for the rotating disc. Thus,
the effective wavenumber of the disturbance, kδ, becomes

kδ =

√
α2 +

β2

r2 = γ0 +
ε3/2

γ0

(
α0α1 +

β0β1

r2

)
+ · · ·

= γ0 +
ε3/2

r1/2
γc

γ0
+ · · ·

= γ0 +
γc

γ0

Re−1/4

r1/2
+ · · ·

= γ0 +
γc

γ0
R−1/2

δ
+ · · · . (23)

The orientation of the vortices is described by the wave angle
φ, where φ denotes the angle between the normal to the radius
vector and the tangent of the spiral. We have

tan
(

π

2
−φ

)
=

rα0

β0
+ ε

3/2r

(
α1

β0
− β1α0

β2
0

)
+ · · ·

=
rα0

β0
+

ε3/2

r1/2
φc + · · ·

=
rα0

β0
+φc

Re−1/4

r1/2
+ · · ·

=
rα0

β0
+φcR−1/2

δ
+ · · · . (24)

In these forms the predictions for the neutral wavenumbers and
orientations of the crossflow vortices can be compared with nu-
merical results, for instance those of [2] for anisotropic and
isotropic roughness.

In the first instance, here these results can be compared to the
case of no-slip; the corrected results of [9] given by Gajjar [4].
These are

kδ =

√
α2 +

β2

r2 = 1.16−9.1R−1/3
δ

+ · · · , (25)

and
tan
(

π

2
−φ

)
= 4.26+17.4R−1/3

δ
+ · · · . (26)

Note the different dependance on Rδ for the partial-slip case.
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Figure 4: The approximation to the effective wavenumber kδ

from (23) with η = 0 for λ = 0.25,0.5 and for the no-slip result
(25).
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Figure 4 shows the results using the first two terms from equa-
tion (23) for the effective wavenumber, kδ, of the neutral distur-
bances for values of the slip coefficients η = 0 and two values
of λ, namely λ = 0.25 and λ = 0.5. We find that for partial slip
the values are lower than those for the no-slip case, equation
(25) also shown. These curves correspond to the upper branch
of the neutral stability curve, so the flow is unstable for values
below the curve. Thus, these modes are stabilised in the case of
partial slip as the range of unstable wavenumbers is reduced.
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Figure 5: The approximation to the wave angle φ from (24) with
η = 0 for λ = 0.25,0.5 and for the no-slip result (26).
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Figure 5 shows the approximation for the wave angle, φ, of the
disturbances using the first two terms of equation (24) for values
of the slip coefficients corresponding to figure 4 and equation
(26) for the case of no-slip. Here the flow is unstable above the
curves. We see that the wave angle in the case of partial wall-
slip is larger than the no-slip case. This corresponds to a larger
number of vortices.

Conclusions

Our analysis has been able to elucidate the asymptotic structure
of a boundary-layer flow with partial-slip boundary conditions
for the case λ > 0 and η = 0. The asymptotic structure for the
rotating disc is altered, with a significant increase in the pres-
sure. In, particular, we have demonstrated that inviscid modes
(Type I) corresponding to co-rotating vortices exist in rotating
flows with partial-slip boundary conditions. The results of this
asymptotic study have furthered the knowledge of how rough-
ness may be used for drag reduction in rotating flows.

Our results are in agreement with those of Cooper et al. [2],
who found that Type I modes are stabilised for a rough surface.

The basic flow solutions obtained for anisotropic roughness
with λ = 0 and η > 0 reveal that the effective velocity profile
is negative at the wall. Thus, there may be zero, one or two
critical layers and the analysis presented is not valid for this
case. Further investigations are required to asertain the structure
of the instability modes for this wall boundary condition, cor-
responding to concentric grooves. Investigations are currently
underway for the case of isotropic roughness, i.e. when λ 6= 0
and η 6= 0.

Since [2] found that the effect of roughness on the Type II
modes can be destabilising, it is of interest to determine the
asymptotic structure of these viscous modes. Ongoing work
is investigating the effect of no-slip boundary conditions on the
Type II instability mode and we hope to report on this shortly.

Another avenue of current focus is the effect of partial slip on
the basic flows of several types of non-Newtonian rotating-disc
flow. The first linear stability analyses of non-Newtonian flows
with partial-slip boundary conditions will also be considered
using asymptotic methods for large Reynolds numbers.
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